Páginas

Señalización celular

 La señalización entre células resulta esencial para la inducción, a fin de conferir competencia para responder, y para que las células que inducen y las que responden mantengan la intercomunicación. Estas líneas de comunicación se establecen mediante interacciones paracrinas, en que proteínas sintetizadas por una célula se difunden a distancias cortas para interactuar con otras células, o bien por interacciones yuxtacrinas, que no implican a proteínas susceptibles de difusión. Las proteínas difusibles responsables de la señalización paracrina se denominan factores paracrinos o factores de crecimiento y diferenciación (GDF, del inglés Growth and Differentiation Factors). 


Vías de transducción de señales 

Señalización paracrina 

Los factores paracrinos actúan por medio de vías de transducción de señales, ya sea al activar de manera directa una vía o bloquear la actividad de un inhibidor de una vía (inhibir al inhibidor, como en el caso de la vía de señalización hedgehog). Las vías de transducción de señales cuentan con una molécula de señalización (el ligando) y un receptor (Fig. 1-6). 

El receptor se extiende a través de la membrana celular y tiene un dominio extracelular (la región de unión al ligando), un dominio transmembrana y un dominio citoplásmico. Cuando un ligando se une a su receptor induce en él un cambio de conformación que activa su dominio citoplásmico. Por lo general, el resultado de esta activación es el desarrollo de actividad enzimática en el receptor, que las más de las veces corresponde a la de una cinasa capaz de fosforilar otras proteínas utilizando ATP como sustrato. A su vez, la fosforilación activa a estas proteínas para que fosforilen proteínas adicionales y, así, se establece una cascada de interacciones proteicas que por último activa a un factor de transcripción. Este factor de transcripción activa entonces la expresión genética, o la inhibe. Las vías son numerosas y complejas, y en algunos casos están constituidas por una proteína que inhibe a otra, que a su vez activa a una tercera (en gran medida como lo que ocurre en la vía de señalización hedgehog). 

FIGURA 1-6 Esquema de una vía de transducción de señales típica que implica a un ligando y a su receptor. La activación del receptor se establece mediante la unión del ligando. De manera característica, la activación es enzimática e implica a una cinasa de tirosina, si bien puede recurrirse a otras enzimas. Por último, la actividad de cinasa da origen a una cascada de fosforilación de varias proteínas, que activa a un factor de transcripción para regular la expresión génica


Señalización yuxtacrina 

La señalización yuxtacrina está mediada de igual modo por vías de transducción de señales, pero no recurre a factores difusibles. En vez de esto, existen tres mecanismos por los que ocurre la señalización yuxtacrina: (1) una proteína ubicada sobre una superficie celular interactúa con un receptor en una célula adyacente, en un proceso análogo a la señalización paracrina (Fig. 1-6). La vía Notch constituye un ejemplo de este tipo de señalización (véase “Vías de señalización clave para el desarrollo”, p. 8). (2) 

Los ligandos secretados por una célula hacia la matriz extracelular interactúan con receptores específicos en las células vecinas. La matriz extracelular es el medio en el que residen las células. Este medio está constituido por moléculas grandes secretadas por las células, como colágena, proteoglucanos (condroitinsulfatos, ácido hialurónico, entre otros) y glucoproteínas, como fibronectina y laminina. 

Estas moléculas conforman un sustrato sobre el cual las células pueden fijarse o migrar. Por ejemplo, la laminina y la colágena tipo IV son componentes de la lámina basal para el anclaje de las células epiteliales, en tanto las moléculas de fibronectina constituyen andamios para la migración celular. Los receptores que unen a las moléculas extracelulares como la fibronectina y la laminina con las células se denominan integrinas. Estos receptores “integran” a las moléculas de la matriz con la maquinaria del citoesqueleto de una célula (p. ej., microfilamentos de actina), con lo que le confieren capacidad para migrar siguiendo el andamiaje de la matriz mediante el uso de proteínas contráctiles, como la actina. De igual modo, las integrinas pueden inducir la expresión génica y regular la diferenciación, como en el caso de los condrocitos que deben enlazarse con la matriz para formar cartílago. (3) Existe una transmisión directa de señales de una célula a otra mediante las uniones gap (uniones en hendidura o uniones comunicantes). Estas uniones se comportan como conductos ubicados entre las células, a través de los cuales pueden pasar moléculas pequeñas y iones. Este tipo de comunicación es importante en células que se encuentran en unión estrecha, como las del epitelio del intestino y del tubo neural, puesto que permiten a las células interactuar en concierto. Las uniones mismas están formadas por proteínas conexinas, que forman un canal, y estos conductos están “conectados” entre células adyacentes. 

Es importante señalar que existe gran redundancia en el proceso de transducción de señales. Por ejemplo, las familias de las moléculas de señalización paracrina a menudo tienen muchos miembros, de modo que otros genes de la familia pueden compensar la pérdida de una de sus contrapartes. Así, la pérdida de la función de una proteína de señalización por la mutación de un gen no necesariamente da origen al desarrollo anormal o la muerte. Además, existe intercomunicación entre las vías, de manera que tienen interconexión íntima. Estas conexiones proveen puntos adicionales numerosos para regular la señalización. 

Factores de la señalización paracrina 

Existe un gran número de factores de señalización paracrina que actúan como ligandos, y que también se denominan GDF. Casi todos ellos se agrupan en cuatro familias, cuyos sus miembros se utilizan en forma repetida para regular el desarrollo y la diferenciación de los sistemas orgánicos. Por otra parte, los mismos GDF regulan el desarrollo de los órganos en todo el reino animal, desde la Drosophila hasta el humano. Los cuatro grupos de GDF más importantes durante el desarrollo incluyen a las familias del factor de crecimiento de fibroblastos (FGF), el WNT, el hedgehog y factor de crecimiento transformante beta (TGF-β). Cada familia de GDF interactúa con su propia familia de receptores, y estos receptores son tan importantes como las moléculas de señalización mismas para determinar el efecto de una señal. 

Factores de crecimiento de fibroblastos 

De origen llamados así por estimular el crecimiento de los fibroblastos en el cultivo, en la actualidad se han identificado cerca de dos docenas de genes FGF capaces de producir cientos de isoformas proteicas mediante la modificación del empalme de su ARN o sus codones de inicio. Las proteínas FGF codificadas por estos genes activan una serie de receptores de cinasas de tirosina que se denominan receptores de factores de crecimiento de fibroblastos (FGFR). A su vez, estos receptores activan distintas vías de señalización. Los FGF son en particular relevantes en la angiogénesis, el crecimiento axónico y la diferenciación del mesodermo. Si bien existe redundancia en la familia, de modo que los FGF en ocasiones pueden sustituirse entre sí, FGF específicos pueden ser responsables de eventos precisos del desarrollo. Por ejemplo, el FGF8 es importante para el desarrollo de las extremidades y partes del cerebro. 

Proteínas hedgehog 

El gen hedgehog recibió su nombre debido a que codifica un fenotipo o patrón de cerdas que genera un aspecto similar al de un erizo terrestre (hedgehog en inglés) en la pata de la Drosophila. En los mamíferos existen tres genes hedgehog: desert, Indian y sonic. La proteína Sonic hedgehog (SHH) está implicada en un gran número de eventos del desarrollo (véase “Vías de señalización clave para el desarrollo”, p. 8). 

Proteínas WNT 

Existen por lo menos 15 genes WNT distintos, que se relacionan con el gen de polaridad segmentaria wingless de la Drosophila. Sus receptores son miembros de la familia frizzled de proteínas. Las proteínas WNT están implicadas en la regulación de patrones en las extremidades, el desarrollo del cerebro medio y ciertos aspectos de la diferenciación de somitas y estructuras urogenitales, entre otras acciones. 

La superfamilia del TGF-β 

La superfamilia del TGF-β cuenta con más de 30 miembros e incluye a los TGF-β, las proteínas morfogenéticas óseas (BMP), la familia de la activina, el factor de inhibición mülleriano (MIF, hormona antimülleriana), y otros. El primer miembro reconocido de la familia, el TGF-β1, se aisló a partir de células transformadas por virus. Los miembros de la familia del TGF-β son importantes para la formación de la matriz extracelular y la ramificación epitelial que se observa durante el desarrollo de pulmones, riñón y glándulas salivales. La familia BMP induce la formación del hueso y participa en la regulación de la división celular, la muerte celular (apoptosis) y la migración celular, entre otras funciones.

Otras moléculas de señalización paracrina 

Otro grupo de moléculas de señalización paracrina con relevancia durante el desarrollo corresponde a los neurotransmisores, entre ellos serotonina, ácido gammaaminobutírico (GABA), adrenalina y noradrenalina, que actúan como ligandos y se unen a receptores al igual que las proteínas. Estas moléculas no son sólo transmisores para las neuronas; también aportan señales importantes para el desarrollo embrionario. Por ejemplo, la serotonina (5-HT) actúa como ligando de un gran número de receptores, casi todos los cuales se encuentran acoplados a proteínas G.

Al actuar a través de estos receptores, la 5-HT regula diversas funciones celulares, entre otras la proliferación y la migración celulares, y es importante para establecer la lateralidad, la gastrulación, el desarrollo cardiaco y otros procesos durante las fases de diferenciación tempranas. 

La noradrenalina también actúa por medio de receptores y parece participar en la apoptosis (muerte celular programada) en los espacios interdigitales, así como en otros tipos de células.

No hay comentarios:

Publicar un comentario